第101章 疯狂的数学菜鸟(3/4)
这也是数学家基础需要全面的原因。
不过我想看看你能不能通过自己的方式做到什么程度。
还有问题没?」
乔喻立刻摇了摇头,说道:「没有了。」
「那我们先走了,明天薛教授会来带你去参加罗伯特教授的讲座。」说完,田言真便跟薛松一起离去。
乔喻目送著两位教授离开,又站起身活动了一下身体,再次看起了论文。
田导说了,下午开始看罗伯特教授的论文就可以了。
现在距离吃饭还有一个多小时,乔喻觉得他应该差不多能把彼得·舒尔茨第一篇论文的营养吸收完了。
..
两位数学导师在温暖的阳光下,默默走出了一段路,薛松忍不住开口问道:「田老,乔喻这半年让他自由去学习我觉得没什么问题,但等到明年开学之后该怎么安排他呢?
还是让他跟英才班一起学习?」
田言真想了想,说道:「不急著做决定,先看看这孩子能做到什么程度吧?
说实话,我现在也不太知道该怎么去教他,只是觉得可以尝试让他自己主动去发掘问题可能更适合一些。」薛松点了点头,说实话他也没什么好办法来教乔喻,甚至当看到乔喻自问自答的那张稿纸时,他都开始怀疑自己能否有那个能力当好乔喻的小导。
不夸张的说,这个世界上能理解彼得·舒尔茨研究内容的数学家都不多。
毕竟这是数学最基础的研究,旨在将代数几何、数论跟p进分析多个领域之间搭建一座桥梁。
乔喻在领悟这些复杂数学思想方面似乎有著极为惊人的天赋,这样的学生他不止是没带过,都没遇见过,顿时感觉压力山大。
「别想那么多了,说到彼得舒尔茨还有一件趣事,他把自己的论文给他的导师兰伯特,兰伯特看完之后就告诉他可以博士毕业了。
所以真正的天才,其实不需要我们太操心的。」田言真又乐观的补充了句。
听了这句话,薛松长出了口气,忍不住问了句:「您在普林斯顿任教的时候,接触的学生比较多,有没有遇到过有乔喻这样天赋的?」田言真笑了笑,说道:「你也在普林斯顿数学院读了八年书,你的同学是个什么情况,应该比我更清楚吧?」
薛松摇了摇头,答道:「天才真的很多,我在其中属于那种很普通的,但要说真让我打心眼里觉得佩服的那种天才,还真没有。」
「那是因为你本来也属于天才的一员。」田言真感慨道:「能在普林斯顿顺利毕业的学生,相对于普通人来说都是天才。
更别提还能博士毕业了,但数学跟理论物理领域的天才们,终究也是要分三六九等的啊!」
一句话,让薛松彻底没了聊天的兴致。
真是一个让人绝望的领域,天才都要被分成三六九等了.
「如果乔喻真是那种我以为的那种天才,我还得感谢你。
如果不是那通电话,万一真错过了,我怕是要后悔一辈子。」田言真看向薛松,诚挚的说道。
「您言重了!」薛松连忙客气道。
「行了,我先回去了,你也忙你的吧。
哦,对了,跟余大的联合培养计划已经拟定好了,我帮你的学生也争取到了一些权益,如果他们的在联合培养期间的成果达到了燕北大学的标准,可以自行选择拿余江大学或者燕北大学的毕业证。」
「哦,那可太感谢您了!」
「小薛,客气了啊!」
看著田言真走进旁边的小楼,薛松站在原地思考了片刻,然后笑著拿出手机,一边朝研究中心外走,一边编辑起消息。
这个消息大概可以给他那帮博士生打上鸡血了吧?
!
中午,乔喻又独自一人去食堂吃了顿午饭,回来小睡了十分钟后,乔喻便开始在燕北大学图书馆的后台搜索了罗伯特教授的论文下载了下来。
听该听的话,也是学生必备的优点。
尤其是导师再三强调过的,甚至将之跟礼貌、尊重扯上了关系,那就是必须要听的内容。
至于其他的..其实可以有选择。
能成为大人物的人,大概率不可能事事都要跟学生斤斤计较。
反正乔喻是这么理解的。
就比如星铁一中的张校长。
只要按照他的要求,把成绩搞出来,其他方面老张是真的特别宽容。
乔喻觉得他就算无聊到把铁一中的招牌给拆下来几个,老张都会笑著让学校后勤部去做个新的,然后对他说一句下不为例。
在燕北大学图书馆的论文检索系统搜索了罗伯特·格林的名字,一下子出现了一堆的论文。
把乔喻吓了一跳。
不过很快发现原来并不都是一个人的。
国外叫罗伯特·格林的人看来很多。
虽然搜索彼得·舒尔茨的时候也碰到过类似问题,但只有一个干扰项,而且那个家伙还是研究化学的。
论文方向完全不同。
但罗伯特这家伙,好多都是数学向的论文。
好在乔喻发现这套论文检索系统其实很好用,不但内容丰富,而且还可以自行选择年限,高级检索页面甚至支持作者单位的搜索。
乔喻记得老薛说过这位教授是纽约大学的,这就方便多了。
很快,正经罗伯特教授的论文便下载好了。
不知道是不是因为先研究彼得·舒尔茨的论文,让乔喻脑袋又开了一次窍,乔喻竟然觉得关于这位教授的论文理解起来好像挺容易的。
好吧,说容易似乎有些飘了,但起码不难。
比如乔喻是真觉得那些引理、定理的前置条件,一系列概念,以及证明过程都很容易就能理解。
不需要耗费太多脑细胞就能看明白。
不过这样劳逸结合还挺好的。
昨天看彼得·舒尔茨的论文的确太费脑子了,今天读不那么难以理解的论文权当放松。
只是虽然放松,但乔喻老老实实把两篇论文读完也已经是晚上九点了,中间就去吃了顿晚餐。
放下论文,乔喻又开始习惯性思考,突然脑子里有了个想法。
罗伯特教授研究的内容说白了就是给定类型的代数曲线尤其是高维代数曲线的有理点个数上界的精确预估问题,这类型问题其实跟丢番图方程密切相关。
寻找有理点的数量,然后研究这些有理数点的分布情况。
无非就是高维代数簇的几何结构往往更为复杂,具有更复杂的奇点、拓扑性质以及不同的同调性质,这些几何特性都在影响了有理点的分布。
所以这类问题的研究目标其实只有一个,尽量简化寻找有理数点的过程,并能很轻松的找到其有理数点的分布。
相当于给定一个高次的丢番图方程,能快速判定是否有解,并将这类方程解出来。
好吧,总之乔喻是这样理解的。
这就是一个数学门外汉的认知了,如果此时老薛在这里,听完乔喻的想法,大概会想直接把这个不知道天高地厚的家伙揍一顿。
原因也很简单,研究目标简直太扯了。
简化寻找有理点的过程,但是想要轻松地找到有理点的分布在高维代数簇上几乎就是不可能的,这是数学常识。
现在大家做的无非是过几何和代数工具高效估计有理点的数量,并通过现代代数几何工具理解它们的分布情况而已。
至于快速求解丢番图方程?
椭圆曲线的求解,或者模形式相关的更复杂的方程即便判定了有解,但真想解出来,老薛也只能说呵呵了。
当然这些对于乔喻这个对数学本就还没有太多敬畏之心的门外汉来说都不是问题,加上昨天他刚刚学习了彼得·舒尔茨的数学思想,一个很大胆的想法,突然就从乔喻脑子里冒了出来,且一发不可收拾。
为什么他不能尝试用彼得·舒尔茨创造的理论来解决这一类问题呢?
先不管行不行,可以尝试著把完备空间引入其中,没有合适的工具来处理类似问题,但他也可以自己来创造嘛。
虽然这是人家搭建的框架,但只要在这个框架内,符合这个框架的规则,来进行工具创造,只要能解决问题,肯定也是可行的。
那么现在摆在乔喻面前的问题就很简单了,如何把有代数曲线有理数点上界估计这个问题,引入到似完备空间理论的框架中来?
初生牛犊不怕虎的乔喻坐在桌前陷入了沉思。
一支笔也开始在稿纸上乱画起来。
好吧...
这个问题似乎不那么简单,主要是问题的转化。
想了很久,乔喻得出了一个结论,如果可以把有理数点上界估计转化为在完备几何对象上的同调和几何性质的问题,那么就可以顺理成章的使用p进几何的深层工具,例如完备代数空间、模形式的几何化、以及p进同调理论,来分析这些有理数点。
就是不知道这样转化的话,会不会让问题变得更加抽象和复杂了。
但不要紧,反正他就是个小卡拉米,他就是玩而已。
试试又不要钱的?
于是很快乔喻就兴致勃勃的在稿纸上写下了这么一段话:
「设X是一个定义在数域K上的高维代数曲线,且X是p进完备代数空间中的闭子集。
本章未完,请翻下一页继续阅读.........